Perturbations of elliptic operators in 1-sided chord-arc domains. Part II: Non-symmetric operators and Carleson measure estimates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New operators through measure of non-compactness

In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...

متن کامل

Perturbations of Discrete Elliptic Operators

Given V a finite set, a self–adjoint operator on C(V ), K, is called elliptic if it is positive semi–definite and its lowest eigenvalue is simple. Therefore, there exists a unique, up to sign, unitary function ω ∈ C(V ) satisfying K(ω) = λω and then K is named (λ, ω)–elliptic. Clearly, a (λ, ω)–elliptic operator is singular iff λ = 0. Examples of elliptic operators are the so–called Schrödinger...

متن کامل

Square Function/non-tangential Maximal Function Estimates and the Dirichlet Problem for Non-symmetric Elliptic Operators

We consider divergence form elliptic operators L = − div A(x)∇, defined in the half space Rn+1 + , n ≥ 2, where the coefficient matrix A(x) is bounded, measurable, uniformly elliptic, t-independent, and not necessarily symmetric. We establish square function/non-tangential maximal function estimates for solutions of the homogeneous equation Lu = 0, and we then combine these estimates with the m...

متن کامل

Spectral Estimates and Non-Selfadjoint Perturbations of Spheroidal Wave Operators

We derive a spectral representation for the oblate spheroidal wave operator, which is holomorphic in the aspherical parameter Ω in a neighborhood of the real line. For real Ω, estimates are derived for all eigenvalue gaps uniformly in Ω. The proof of the gap estimates is based on detailed estimates for complex solutions of the Riccati equation. The spectral representation for complex Ω is deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2020

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/8148